
The SDSS-III Baryon Acoustic Oscillation Survey (BOSS)

!
BOSS has collected the spectra of 1.5 million galaxies and 300,000 
quasars in order to map the structure of the Universe in 3D and to 
measure the clustering of galaxies in the Universe on very large scales. 
!
!
BOSS astronomers use these measurements of galaxy clustering to 
test predictions of the Big Bang Theory and to better understand the 
mysterious Dark Energy, which appears to be driving the accelerating 
expansion of the Universe. 
!
!
How do the locations of the holes on the aluminum BOSS plate end up 
telling us about large-scale structure in the Universe?  Let’s find out!
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The early universe was filled with a hot, dense plasma of electrons and 
baryons (protons and neutrons), which was almost perfectly smooth… 
but not quite.  
!
Around each slightly over-dense point in the early Universe, the plasma 
oscillated in spherical waves, due to the counteracting forces of gravity 
and pressure.  These oscillations are described as acoustic, since they 
are analogous to sound waves, which create pressure differences in air. 

Image Credit: Wayne Hu, University of Chicago
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At these early times photons were trapped, unable to travel very far without 
interacting with the plasma.  
!
The universe expanded and cooled with time. About 379,000 years after 
the big bang, it had cooled enough to allow neutral Hydrogen to form out of 
the plasma. Photons that had previously been trapped by the plasma could 
then escape for the first time and free-stream through space.  Those 
photons released after Hydrogen recombination produce our earliest image 
of the universe — a map of the cosmic microwave background (CMB).

A map of the CMB, made with 9 years of data from the WMAP satellite (2012).



The initial density fluctuations, shown as color differences in the map of the 
CMB, acted like seeds from which the first galaxies formed and grew into 
the largest structures in the universe. 
!
The scale of density fluctuations seen in the CMB provide a “standard ruler” 
for physical size, which we can compare to the scale of galaxy clustering in 
the modern universe to  precisely measure how space has expanded over 
time.

A partial map of galaxies 
in the modern universe, 

as observed by the 
BOSS survey

Map of density fluctuations 
in the early universe, as 
observed in the cosmic 
microwave background 
(CMB) radiation with the 

WMAP satellite.



The BOSS Survey aimed to make a precise measurement of the 
clustering of galaxies over a wide range of scales in order to test 
whether galaxies are excessively clustered on a particular large 
scale called the baryon acoustic peak.  This peak is predicted to 
exist at the physical distance reached by the primordial sound 
waves in the early universe when Hydrogen recombination occurred.

Map of galaxies in the modern 
universe, as observed by the 

BOSS survey Predicted radius of 
the BAO peak, 

drawn around one 
galaxy



If galaxies were randomly distributed in space, 
the Universe would look like this



But gravity causes real galaxies to clump 
together over time, so the real Universe looks 

more “clustered” (or clumpy) like this:



A universe in which galaxies are excessively clustered 
at a certain scale (distance between galaxies) might 

look something like this*:

*In this illustration, the excess clustering is greatly exaggerated 
to make it appear obvious around certain points in space.



At the particular scale of the baryon acoustic peak (BAO), 
the clustering of galaxies is indeed slightly excessive.   
!
BUT, it takes hundreds of thousands of galaxies to see this 
feature and to measure it precisely.
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Astronomers can use some surprisingly easy 
math to measure the clustering of galaxies. 

!
One way to do this is to measure something 

called the “two-point correlation”: 
!

This measurement computes on average how 
many more galaxies you find at a certain 

distance around galaxies in the real Universe, 
compared to what you would expect if 

galaxies were distributed randomly in space. 



As a mathematical equation, the simplest 
“two-point correlation function” w(r) looks like this: 

!
!
!
!

where Nreal is a sum of the number of galaxies in the real 
Universe that are a certain distance (r) away from other 

galaxies, and Nrandom is the number of galaxies in a random 
distribution that are the same distance (r) away from other 

galaxies.

Let’s try measuring it!

w(r) = Nreal

Nrandom

−1



We’ll start by counting the galaxies in the 
“real Universe” that are a certain distance 

(let’s say, between 1 and 2 units in radius, r) 
away from other galaxies.

r 

Place the center of this ring on as many 
galaxies as you can (trying not to repeat any), 

and count up all the other galaxies whose 
centers fall within the ring.

1 2 3 4 



Nreal = 2 



Nreal = 
2+3 



Nreal = 
2+3+4 



Nreal = 
2+3+4+4 



Nreal = 
2+3+4+4

+2 



Nreal = 
2+3+4+4

+2+4 



N
2+3+4+4

+2+4!
+1 = 20



In our “real Universe” we made 
measurements around 8 galaxies within a 
distance of r=1, and counted a total of 20: 

 Nreal = 20!
!

Let now do the same exercise for the 
“random distribution”.  Be sure to do the 

same number of measurements (8), and to 
try not to center the measurement on the 

same galaxy more than once.

r 

1 2 3 4 



Nrandom = 1 



Nrandom = 
1+3 



Nrandom = 
1+3+0 



Nrandom = 
1+3+0+2 



Nrandom = 
1+3+0+2 

+2 



Nrandom = 
1+3+0+2!

+2+3 



Nrandom = 
1+3+0+2!
+2+3+3 



Nrandom = 
1+3+0+2!

+2+3+3+2 
=16 



In our “random Universe” we made 
measurements around 8 galaxies within a 
distance of r between 1 and 2 (or, r=1.5), 

and counted a total of 16: 
 Nrandom = 16!

!

We now have enough information to calculate 
the “two-point correlation function” w(r) at r=1.5: 

!
!
!
!

= 20
16

−1

= 1.25 −1.
= 0.25

w(r = 1.5) = Nreal

Nrandom

−1



So what does this “clustering” measurement 
of 0.25 actually tell us?!

!
!
!

w(r = 1.5) = Nreal

Nrandom

−1= 0.25



Well, if galaxies in our “real” Universe were 
not clustered at all, then the measurement 
of Nreal  would be approximately the same 

as our measurement for Nrandom… meaning: 
Nreal  = Nrandom!

!
!w(r = 1.5) = Nreal

Nrandom

−1

= 1
1
−1

= 1−1
= 0



So what does this “clustering” measurement 
of 0.25 actually tell us?!

!
!

The fact that 0.25 > 0.0 tells us that the “real” 
Universe we’ve measured is more clustered than 

a random distribution. 

w(r = 1.5) = Nreal

Nrandom

−1= 0.25



Remember now that 
the “two-point correlation function” w(r) looks like this: 

!
!
!
!

which means, we really want to do this same counting 
technique for a range of distances, to see how the amount of 

clustering depends on the physical scale (r).  

w(r)

r

w(r) = Nreal

Nrandom

−1



w(r)

r

We have already made a measurement at r=1.5,  
but we would need to make some more!
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w(r) = Nreal

Nrandom
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Directions:!
!
1. Print the rainbow-colored 
annulus tool on the next page 
onto a transparency.!
!
2.  Then try measuring the two-
point correlation function over a 
range of scales, using the real and 
random galaxy fields printed on 
the following pages.!
!
3. Compare the shape you see to 
the SDSS measurements made 
with millions of galaxies.  Are 
there similarities?!



1
2
3
4
5
6
7
8
9

Print on transparency







Mid/Post-Activity Discussion:!
!
1) This is tedious!!  How do astronomers do this sort of 

counting for observations of millions of galaxies?

Prof. Alexander Szalay of Johns Hopkins University and the SDSS  
(Photo: Joey Pulone / The Chronicle) 

Astronomers in the SDSS like Prof. Alex Szalay (shown below) use powerful 
computers to measure the clustering in vast catalogs of galaxies in reasonable 
amounts of time.  This way, the measuring happens fast, and no one gets bored!



Mid/Post-Activity Discussion:!
! !
2) How do the holes on the aluminum plug plates 

relate to measurements of galaxy clustering?
Most of the holes on a BOSS plug plate line up with the positions of distant galaxies and quasars.  
Astronomers in the SDSS use the positions of these galaxies are used to measure the real clustering 
of large-scale structure in the Universe.  With modern computers, these measurements are relatively 
quick and easy, but that only gives us the N_real measurement for the cross-correlation equation.  
!
Determining what an unclustered Universe might look like, in order to measure N_random (the 
denominator for our clustering measurement), is often the hard part! To do this, SDSS astronomers 
use computers to make vast catalogs of random positions on the sky where galaxies could 
theoretically be observed.  Often dust or bright stars obscure our view of distant galaxies, so making 
these maps realistic is tricky and also critical to generating accurate measurements of the BAO.



Mid/Post-Activity Discussion:!
!

!
!

3) Who are the SDSS astronomers?

Astronomers in the SDSS are a friendly and diverse, international group of 
scientists, engineers, and technicians — who range in experience from 
undergraduate students to senior scientists. 

2014 SDSS-III Collaboration Meeting 
Park City, Utah 



Activity Extension:  Understanding Signal-to-Noise!
!!
!
As you’ve probably discovered, measuring the two-point correlation of galaxy clustering by 
hand is a very time-consuming exercise!  And depending on how many measurements you’ve 
made, the results may look pretty noisy. 
!
!
!
!
!
!
!
!
!
!
If you have many people working on the two-point correlation measurement activity, try 
working individually or in small groups.  Each individual or group will naturally choose different 
galaxies on which to center their counting.   
  
 Make a plot of each individual/group’s two-point correlation measurements, and then 
compare it to the average of everyone’s combined.  Do the measurements look less 
scattered?  What if you quantify the noise?  Try approximating the Poisson error bars for the 
individual/group and combined average measurements.  How do the errors compare between 
the individual/group measurements and the average of them all?

Often it takes a large number of measurements to see a clear signal in 
data.  Take for example, a game in which many people guess the 
number of jelly beans in a jar.  Each person’s guess (measurement) will 
be imprecise on its own… but taken together, a normal distribution of 
measurements will be peaked toward precisely the right answer!   
!
!
!
!
!
!



Activity Extension:  Understanding Cosmic Variance!
!
Astronomers now know from observations that the universe is generally homogeneous (similar 
in its makeup) and isotropic (similar in the distribution of its contents in all directions). But one 
still needs large samples to measure these average properties.  For instance, if you only 
measured the clustering of galaxies in a one or two very small parts of the sky (like Areas 1 & 2 
in the picture below), you might find the universe to be much more or much less clustered than 
it truly is on average.  This problem is referred to in astronomy as “cosmic variance”. 

Area 1

Area 2

!
You might have already noticed that your measurement of 
the two-point correlation in this activity will partly depend 
on which galaxies in the field you included in your sample.  
This is why one individual/group’s measurements might not 
be the same as another’s, and it contributes to the overall 
“noise” in the two-point correlation measurement.  
!
The size of the differences between the results from each 
individual/group can be used to measure the effects of 
cosmic variance.   
!
Combining measurements from each individual/group to 
determine an average two-point correlation:  
1) increases the signal-to-noise, and  
2) helps to remove the noisy effects of cosmic variance 

and get closer to the true physical measurement.


